Solution to Assignment 4, MMAT5520

by YU, Rongfeng

Exercise 5.2:

1(b). Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-3 & 2 \\
-4 & \lambda+1
\end{array}\right|=0 \\
\lambda^{2}-2 \lambda+5=0 \\
\lambda=1 \pm 2 i
\end{gathered}
$$

For $\lambda_{1}=1+2 i$, consider

$$
\left(\begin{array}{cc}
2 i-2 & 2 \\
-4 & 2+2 i
\end{array}\right) v=0
$$

$v_{1}=\binom{1}{1-i}$ is an eigenvector of A corresponding to $1+2 i$.
For $\lambda_{2}=1-2 i$, consider

$$
\left(\begin{array}{cc}
-2 i-2 & 2 \\
-4 & 2-2 i
\end{array}\right) v=0
$$

$v_{2}=\binom{1}{1+i}$ is an eigenvector of A corresponding to $1-2 i$.
Let $Q=\left(\begin{array}{cc}1 & 1 \\ 1-i & 1+i\end{array}\right)$, then we have $Q^{-1} A Q=\left(\begin{array}{cc}1+2 i & 0 \\ 0 & 1-2 i\end{array}\right)$.
1(d). Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
-6 & -11 & \lambda-6
\end{array}\right|=0, \\
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0, \\
(\lambda-1)(\lambda-2)(\lambda-3)=0, \\
\lambda=1,2,3 .
\end{gathered}
$$

For $\lambda_{1}=1$, consider

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
-6 & -11 & -5
\end{array}\right) v=0
$$

$v_{1}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ is an eigenvector corresponding to $\lambda_{1}=1$.

For $\lambda_{2}=2$, consider

$$
\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 1 \\
-6 & -11 & -4
\end{array}\right) v=0
$$

$v_{2}=\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)$ is an eigenvector corresponding to $\lambda_{2}=2$.
For $\lambda_{3}=3$, consider

$$
\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 3 & 1 \\
-6 & -11 & -3
\end{array}\right) v=0,
$$

$v_{3}=\left(\begin{array}{c}1 \\ -3 \\ 9\end{array}\right)$ is an eigenvector corresponding to $\lambda_{3}=3$.
Let $Q=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9\end{array}\right)$, then we have $Q^{-1} A Q=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.
1(e). Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-3 & 2 & 0 \\
0 & \lambda-1 & 0 \\
4 & -4 & \lambda-1
\end{array}\right|=0, \\
(\lambda-1)^{2}(\lambda-3)=0, \\
\lambda=1,1,3 .
\end{gathered}
$$

For $\lambda_{1}=\lambda_{2}=1$, consider

$$
\left(\begin{array}{ccc}
-2 & 2 & 0 \\
0 & 0 & 0 \\
4 & -4 & 0
\end{array}\right) v=0
$$

$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ are two independent eigenvectors corresponding to $\lambda=1$. For $\lambda_{3}=3$, consider

$$
\left(\begin{array}{ccc}
0 & 2 & 0 \\
0 & 2 & 0 \\
4 & -4 & 2
\end{array}\right) v=0,
$$

$v_{3}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$ is an eigenvector corresponding to $\lambda=3$.
Let $Q=\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 2\end{array}\right)$, then we have $Q^{-1} A Q=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$.
2. Soution: You could find it in "Lecture Notes: Chapter 1-6, Answers to Exercises".
7. Soution: You could find it in "Lecture Notes: Chapter 1-6, Answers to Exercises".
10. Soution: You could find it in "Lecture Notes: Chapter 1-6, Answers to Exercises".

Exercise 5.3:

1(a).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-5 & 6 \\
-3 & \lambda+4
\end{array}\right|=0 \\
(\lambda+1)(\lambda-2)=0 \\
\lambda=-1,2
\end{gathered}
$$

For $\lambda_{1}=-1$, consider

$$
\left(\begin{array}{ll}
-6 & 6 \\
-3 & 3
\end{array}\right) v=0
$$

$v_{1}=\binom{1}{1}$ is an eigenvector of A corresponding to $\lambda=-1$.
For $\lambda_{2}=2$, consider

$$
\left(\begin{array}{cc}
-3 & 6 \\
-3 & 6
\end{array}\right) v=0
$$

$v_{2}=\binom{2}{1}$ is an eigenvector of A corresponding to $\lambda=2$.
Let $Q=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$, then we have $Q^{-1}=\left(\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right)$ and $Q^{-1} A Q=D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$.
Hence

$$
\begin{aligned}
A^{5} & =\left(Q D Q^{-1}\right)^{5}=Q D^{5} Q^{-1} \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right)^{5}\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 32
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
65 & -66 \\
33 & -34
\end{array}\right)
\end{aligned}
$$

1(d).Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{cc}
\lambda-1 & 5 \\
-1 & \lambda+1
\end{array}\right|=0 \\
\lambda^{2}+4=0 \\
\lambda= \pm 2 i
\end{gathered}
$$

For $\lambda_{1}=2 i$, consider

$$
\left(\begin{array}{cc}
-1+2 i & 5 \\
-1 & 1+2 i
\end{array}\right) v=0
$$

$v_{1}=\binom{1+2 i}{1}$ is an eigenvector of A corresponding to $\lambda=2 i$.

For $\lambda_{2}=-2 i$, consider

$$
\left(\begin{array}{cc}
-1-2 i & 5 \\
-1 & 1-2 i
\end{array}\right) v=0
$$

$v_{2}=\binom{1-2 i}{1}$ is an eigenvector of A corresponding to $\lambda=-2 i$.
Let $Q=\left(\begin{array}{cc}1+2 i & 1-2 i \\ 1 & 1\end{array}\right)$, then we have $Q^{-1}=\frac{1}{4 i}\left(\begin{array}{cc}1 & -1+2 i \\ -1 & 1+2 i\end{array}\right)$ and $Q^{-1} A Q=D=$ $\left(\begin{array}{cc}2 i & 0 \\ 0 & -2 i\end{array}\right)$.
Hence

$$
\begin{aligned}
A^{5} & =\left(Q D Q^{-1}\right)^{5}=Q D^{5} Q^{-1} \\
& =\left(\begin{array}{cc}
1+2 i & 1-2 i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 i & 0 \\
0 & -2 i
\end{array}\right)^{5} \frac{1}{4 i}\left(\begin{array}{cc}
1 & -1+2 i \\
-1 & 1+2 i
\end{array}\right) \\
& =\frac{1}{4 i}\left(\begin{array}{cc}
1+2 i & 1-2 i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
32 i & 0 \\
0 & -32 i
\end{array}\right)\left(\begin{array}{cc}
1 & -1+2 i \\
-1 & 1+2 i
\end{array}\right) \\
& =\left(\begin{array}{cc}
16 & -80 \\
16 & -16
\end{array}\right)
\end{aligned}
$$

1(e). Soution: Solving the characteristic equation, we have

$$
\begin{gathered}
\left|\begin{array}{ccc}
\lambda-1 & -2 & 1 \\
-2 & \lambda-4 & 2 \\
-3 & -6 & \lambda+3
\end{array}\right|=0 \\
\lambda^{2}(\lambda-2)=0 \\
\lambda=0,0,2
\end{gathered}
$$

For $\lambda_{1}=\lambda_{2}=0$, consider

$$
\left(\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & -4 & 2 \\
-3 & -6 & 3
\end{array}\right) v=0
$$

$v_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are two independent eigenvectors corresponding to $\lambda=1$.
For $\lambda_{3}=2$, consider

$$
\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & -2 & 2 \\
-3 & -6 & 5
\end{array}\right) v=0
$$

$v_{3}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is an eigenvector corresponding to $\lambda=2$.
Let $Q=\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right)$, then we have $Q^{-1}=\frac{1}{2}\left(\begin{array}{ccc}-2 & -2 & 2 \\ -3 & -6 & 5 \\ 1 & 2 & -1\end{array}\right)$ and $Q^{-1} A Q=D=$ $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$.

Hence

$$
\begin{aligned}
A^{5} & =\left(Q D Q^{-1}\right)^{5}=Q D^{5} Q^{-1} \\
& =\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) \frac{1}{2}\left(\begin{array}{ccc}
-2 & -2 & 2 \\
-3 & -6 & 5 \\
1 & 2 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 32
\end{array}\right)\left(\begin{array}{ccc}
-2 & -2 & 2 \\
-3 & -6 & 5 \\
1 & 2 & -1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
16 & 32 & -16 \\
32 & 64 & -32 \\
48 & 96 & -48
\end{array}\right) .
\end{aligned}
$$

Exercise 5.4:

1(a).Soution: The characteristic polynomial of A is:

$$
\operatorname{det}(x I-A)=\left|\begin{array}{cc}
x-5 & 4 \\
-3 & x+2
\end{array}\right|=(x-1)(x-2)
$$

The minimal polynomial of A is $m(x)=(x-1)(x-2)=x^{2}-3 x+2$.

$$
\begin{gathered}
A^{2}-3 A+2 I=0, \quad A^{2}=3 A-2 I \\
A^{3}=3 A^{2}-2 A=3(3 A-2 I)-2 A=7 A-6 I \\
A^{4}=7 A^{2}-6 A=7(3 A-2 I)-6 A=15 A-14 I \\
A^{2}-3 A+2 I=0, \quad A-3 I+2 A^{-1}=0 \\
A^{-1}=-\frac{1}{2} A+\frac{3}{2} I
\end{gathered}
$$

1(b).Soution: The characteristic polynomial of A is:

$$
\operatorname{det}(x I-A)=\left|\begin{array}{cc}
x-3 & 2 \\
-2 & x+1
\end{array}\right|=(x-1)^{2}
$$

The minimal polynomial of A is either $x-1$ or $(x-1)^{2}$.
Since $A-I=\left(\begin{array}{ll}2 & -2 \\ 2 & -2\end{array}\right) \neq \mathbf{0}$, the minimal polynomial of A is $m(x)=(x-1)^{2}=x^{2}-2 x+1$.

$$
\begin{gathered}
A^{2}-2 A+I=0, \quad A^{2}=2 A-I \\
A^{3}=2 A^{2}-A=2(2 A-I)-A=3 A-2 I \\
A^{4}=3 A^{2}-2 A=3(2 A-I)-2 A=4 A-3 I \\
A^{2}-2 A+I=0, \quad A-2 I+A^{-1}=0 \\
A^{-1}=-A+2 I
\end{gathered}
$$

1(d).Soution: The characteristic polynomial of A is:

$$
\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x+1 & -1 & 0 \\
4 & x-3 & 0 \\
-1 & 0 & x-2
\end{array}\right|=(x-1)^{2}(x-2)
$$

The minimal polynomial of A is either $(x-1)(x-2)$ or $(x-1)^{2}(x-2)$.
Since $(A-I)(A-2 I)=\left(\begin{array}{ccc}-3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}-2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}2 & -1 & 0 \\ 4 & -2 & 0 \\ -2 & 1 & 0\end{array}\right) \neq \mathbf{0}$, the minimal polynomial of A is $m(x)=(x-1)^{2}(x-2)=x^{3}-4 x^{2}+5 x-2$.

$$
\begin{gathered}
A^{3}-4 A^{2}+5 A-2 I=0 \\
A^{3}=4 A^{2}-5 A+2 I \\
A^{4}=4 A^{3}-5 A^{2}+2 A=4\left(4 A^{2}-5 A+2 I\right)-5 A^{2}+2 A=11 A^{2}-18 A+8 I . \\
A^{3}-4 A^{2}+5 A-2 I=0, \quad A^{2}-4 A+5 I-2 A^{-1}=0 \\
A^{-1}=\frac{1}{2} A^{2}-2 A+\frac{5}{2} I .
\end{gathered}
$$

1(e).Soution: The characteristic polynomial of A is:

$$
\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x-3 & -1 & -1 \\
-2 & x-4 & -2 \\
1 & 1 & x-1
\end{array}\right|=(x-2)^{2}(x-4)
$$

The minimal polynomial of A is either $(x-2)(x-4)$ or $(x-2)^{2}(x-4)$.
Since $(A-2 I)(A-4 I)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & -1\end{array}\right)\left(\begin{array}{ccc}-1 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & -1 & -3\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, the minimal polynomial of A is $m(x)=(x-2)(x-4)=x^{2}-6 x+8$.

$$
\begin{gathered}
A^{2}-6 A+8 I=0, \quad A^{2}=6 A-8 I, \\
A^{3}=6 A^{2}-8 A=6(6 A-8 I)-8 A=28 A-48 I, \\
A^{4}=28 A^{2}-48 A=28(6 A-8 I)-48 A=120 A-224 I . \\
A^{2}-6 A+8 I=0, \quad A-6 I+8 A^{-1}=0, \\
A^{-1}=-\frac{1}{8} A+\frac{3}{4} I .
\end{gathered}
$$

